Gradient Perfusion Culture - Simulating a Tissue-Specific Environment for Epithelia in Biomedicine
نویسندگان
چکیده
Epithelia act in the organism as biological barriers. All of them are exposed to different environments at the luminal and basal side. To simulate such a tissue-specific situation Minusheet ® gradient perfusion culture was developed. For pharmaceutical research, biomaterial testing and tissue engineering epithelial cells are cultured on individually selected supports (1). Growing epithelia are stabilized within a tissue carrier (2). Long term culture is performed in a gradient perfusion container (3). To expose epithelia to a tissue-specific environment fresh media of different composition are transported parallel to the luminal and basal compartment of the gradient container. During culture leakage, edge damage and pressure differences have to be avoided. Harvest of intact epithelia is promoted by the use of biocompatible supports and innovative equipment such as transport of oxygen-rich and gas bubble-free medium. Actual literature demonstrates that gradient perfusion culture is an effective method to investigate barrier functions under realistic conditions. Examples of application comprise renal epithelia, retina, blood-air barrier, blood-brain barrier including aspects of tissue-specific development and regeneration.
منابع مشابه
Modulation of cell differentiation in perfusion culture.
An in vitro model was used to investigate the terminal differentiation mechanisms leading from embryonic to adult renal tissue. For these experiments the capsula fibrosa with adherent embryonic tissue was isolated from neonatal rabbit kidneys. These explants were mounted onto special tissue carriers and cultured in medium containing serum for 24 h. During that time collecting duct (CD) cells gr...
متن کاملSupportive development of functional tissues for biomedical research using the MINUSHEET® perfusion system
Functional tissues generated under in vitro conditions are urgently needed in biomedical research. However, the engineering of tissues is rather difficult, since their development is influenced by numerous parameters. In consequence, a versatile culture system was developed to respond the unmet needs.Optimal adhesion for cells in this system is reached by the selection of individual biomaterial...
متن کاملEmbryonic renal collecting duct cell differentiation is influenced in a concentration-dependent manner by the electrolyte environment.
BACKGROUND During kidney development, the embryonic collecting duct (CD) epithelium develops into a heterogeneously composed epithelium consisting of principal and intercalated cells. It is unknown by which molecular mechanism the different cell types arise. We have experimental evidence that the electrolyte environment is involved in the process of terminal cell differentiation. METHODS Embr...
متن کاملBridging the gap between traditional cell cultures and bioreactors applied in regenerative medicine: practical experiences with the MINUSHEET perfusion culture system.
To meet specific requirements of developing tissues urgently needed in tissue engineering, biomaterial research and drug toxicity testing, a versatile perfusion culture system was developed. First an individual biomaterial is selected and then mounted in a MINUSHEET(®) tissue carrier. After sterilization the assembly is transferred by fine forceps to a 24 well culture plate for seeding cells or...
متن کاملTissue factory: conceptual design of a modular system for the in vitro generation of functional tissues.
Tissue factory is a modular system designed to generate artificial tissues under optimal perfusion culture conditions. The microenvironment within the culture containers can be fine-tuned to meet the physiological needs of individual tissues, so that the generation of differentiated three-dimensional tissue constructs becomes possible. An optimal physiological environment is created by modulati...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2009